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Bioinformatics and chemoinformatics approaches contribute to hit discovery, hit-to-lead optimization, safety
profiling, and target identification and enhance our overall understanding of the health and disease states. A
vast repertoire of computational methods has been reported and increasingly combined in order to address
more and more challenging targets or complex molecular mechanisms in the context of large-scale integra-
tion of structure and bioactivity data produced by private and public drug research. This review explores
some key computational methods directly linked to drug discovery and chemical biology with a special
emphasis on compound collection preparation, virtual screening, protein docking, and systems pharma-
cology. A list of generally freely available software packages and online resources is provided, and examples
of successful applications are briefly commented upon.
Introduction
Significant efforts are being spent in the pharmaceutical industry

and in academic groups to identify small organic hit compounds

that could become drugs after simultaneous optimization of

interrelated properties, such as bioactivity, absorption-distribu-

tion-metabolism-excretion-toxicity (ADMET), and the underlying

physicochemical properties. In addition, small molecule probes

are also needed to understand biological processes in the health

and disease states. Phenotypic and target-based medium-to-

high-throughput screening (HTS) of chemical libraries are

currently the major technologies used to identify novel hit

compounds (Campbell, 2010; Macarrón et al., 2011; Stockwell,

2004; Swinney and Anthony, 2011). Yet, other technologies

and methodological developments contribute to the design of

better and safer compounds, such as the different ‘‘omics’’ initia-

tives, next-generation sequencing with ultimately identification

of new targets, biomarkers, and genetic variations with the re-

sulting increased awareness of pharmacogenetic and epigenetic

events (Kramer et al., 2007; Woollard et al., 2011). Computa-

tional approaches are being developed along with experimental

technologies to analyze and integrate in vitro and in vivo data, to

predict health-related events, and possibly to reduce the amount

of experimental work that has to be performed to design amagic

bullet. In silico methods can be used at the different stages of the

drug discovery process and, for instance, can involve querying

genomic data, running comparative genomics, investigating

protein and peptide folding, defining protein interaction

networks, analyzing the impact of point mutations, and assisting

in clinical trial design, to name only a few (Mah et al., 2011; Pierri

et al., 2010) (Fernald et al., 2011; Thusberg et al., 2011; Tsai et al.,

2009; Tuncbag et al., 2011; Villoutreix, 2002; Woollard, 2010;

Woollard et al., 2011). In the present study, we will review
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some computational approaches and databases that assist the

discovery of hit compounds, with an emphasis on strategies

used to prepare compound collections and on virtual screening

and protein docking and their links with the design of protein-

protein interaction modulators. We end the article by briefly dis-

cussing systems pharmacology and related off-target prediction

methods because we envision that such global integrative

approaches can lead to new therapeutic interventions while

reducing the risk of failure. Applications of these concepts and

methods are briefly illustrated with specific examples integrated

in each paragraph.

Compound Collections and Some Related ADMET
Considerations
It is now generally accepted that an important prerequisite for

successful HTS and in silico screening lies in the use of a high-

quality compound collection. The problem is that there is no

consensus solution at present to design such an ideal compound

library because of our still limited understanding of the com-

plexity of living organisms and because it will obviously be de-

pending on the project, the stage of the project and goals, and

whether the intended outcome is a drug or a chemical probe

(Workman and Collins, 2010). Lessons learned from the past

can assist present decision making and definition of guidelines,

keeping in mind that, as knowledge evolves, rules and strategies

have to be questioned and revisited (Faller et al., 2011; Gedeck

et al., 2010; Segall et al., 2009; Singh et al., 2011; Smith et al.,

2010; Stepan et al., 2011). Screening collections of physically

available compounds usually contain chemotypes that were

synthesized for other projects or were purchased from external

vendors. Although they may contain several millions of com-

pounds, they still explore only a minute fraction of the chemical
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space, because this one is estimated to be in the range of

1018–10200 molecules (Dobson, 2004). Because assembling

andmaintaining a screening collection is expensive and because

the chance of obtaining valuable hits is generally linked to the

quality of the compounds, tremendous efforts have been spent

in pharmaceutical companies and in academic laboratories to

develop protocols facilitating the design of ‘‘better and safer’’

libraries while reducing the threat of missing possible active

series (Baell, 2010; Bauer et al., 2010; Charifson and Walters,

2002; Davies et al., 2006; Drewry and Macarrón, 2010; Gleeson

et al., 2011b; Hert et al., 2009; Hu et al., 2011; Macarrón and

Luengo, 2011; Orry et al., 2006; Park et al., 2011; Pitt et al.,

2009; Renner et al., 2011; Sperandio et al., 2010b; Stocks

et al., 2009). Many chemical databases and compound collec-

tions are freely available online (Ekins and Williams, 2010; Ertl

and Jelfs, 2007; Gozalbes and Pineda-Lucena, 2011; Richard

et al., 2006; Villoutreix et al., 2007). They contain, for instance,

collections collated from different vendors, virtual compounds,

drugs and experimental molecules or databases of toxic mole-

cules, molecules used in HTS experiments, or metabolites (Table

S1 available online). There are also numerous in silico tools that

can be used to design a compound collection (Table S1) (Villou-

treix et al., 2007), and several general strategies have been

recently proposed (Bologa et al., 2006; Brenk et al., 2008; Four-

ches et al., 2010; Hann, 2011; Huggins et al., 2011; Muchmore

et al., 2010; Steinmeyer, 2006). These usually involve physico-

chemical property filtering based on empirical rules because

these properties play many different roles (from compound

handling and developability to oral bioavailability up to increased

risk of toxicity) (Ganesan, 2008; Khanna andRanganathan, 2009;

Meanwell, 2011; O’Shea andMoser, 2008;Waring, 2009;Waring

and Johnstone, 2007). The rule of five (Lipinski, 2000), recently

revisited using pharmacokinetic data in rat (Ridder et al., 2011),

is a well-known example, but many related rules have been

proposed since then, such as the recent 3/75 rule that relates

physicochemical properties to in vivo toxicity (Hughes et al.,

2008). It is also beneficial when preparing a collection to remove

or flag molecules carrying unwanted atoms and functional

groups (Axerio-Cilies et al., 2009; Benigni and Bossa, 2011;

Enoch et al., 2011; Erve, 2006; Kalgutkar et al., 2005; Kazius

et al., 2005; Rishton, 2003). Compounds may be deemed less

attractive because they bear toxicophores, such as nitro, aniline,

hydantoin, and cyanohydrin, which are associated with metabo-

lism-mediated toxicity. Alternatively, groups such as aldehydes

and epoxides may be considered inappropriately electrophilic,

whereas others such as thiols are redox active. It has also

been recommended to pay attention to compounds such as

PAINS that appear to nonspecifically interfere across many

different assay formats (Baell and Holloway, 2010) and also to

pay attention to unexpectedly electrophilic compounds as de-

tected the ALARM NMR protocol (Huth et al., 2005). It is noted

that many of these can be flagged with the recently reported

FAF-Drugs2 online server (Lagorce et al., 2011). Some discretion

may be required here with regard to assembling a library from

commercially available compounds and ‘‘structural alerts,’’

because not only is the representation of the diversity space

so incomplete, but also because the most rigorous filters may

remove up to 98% of a given vendor’s collection. In such cases,

it may be better to include potential metabolic liabilities rather
30 Chemistry & Biology 19, January 27, 2012 ª2012 Elsevier Ltd All r
than to discard valuable diversity space. For example, hydra-

zones are easy to assemble and anilines are easy to substitute

in the activated ortho and para positions. Both classes are asso-

ciatedwith toxicmetabolites, but it may be better to include such

compounds in screening and simply undertake early isostere

replacement in any discovered hit (such as an aminopyrazine

for an aniline hit). Similarity and diversity of compounds to add

to a collection can be evaluated as distances or coefficients,

such as the well-known Tanimoto index, which computes the

difference in one or several molecular properties (descriptors)

between two compared molecules. The diversity of the

compound libraries (Akella and DeCaprio, 2010) can be visual-

ized with, for instance, ChemGPS-NP (Rosén et al., 2009), and

graphical comparison of the shapes of the molecules can also

be valuable for collection design (Akritopoulou-Zanze et al.,

2007). Additional ADMET properties may need to be computed,

for instance, before ordering newmolecules, before synthesis, or

during the hit-to-lead optimization phase. ADMET prediction

models are extremely challenging to develop but can help bias

medicinal chemistry into ‘‘safer’’ areas of the chemical space

(Gleeson et al., 2011a; Smith, 2011; Stoll et al., 2011; Valerio,

2009). In silico tools include simple look-up tables, where the

query compound is compared with a list of molecules with

known experimental data using, for instance, fingerprint

methods or other similarity search approaches. Alternatively,

or in addition, QSARmodels can be built to predict ADMET prop-

erties in which molecular structural features (e.g., descriptors)

are correlated with observed biological activity by using regres-

sion or machine learning methods. Furthermore, direct structural

information between a molecule and an ADMET target can be

estimated by docking or pharmacophore modeling and can be

combined with QSAR modeling (Ekins et al., 2009; Moroy

et al., 2011), leading to mechanistic profiling. Where 3D ligand

searches are involved, low-energy conformers can be produced

‘‘on the fly’’ or can be precalculated and stored as multicon-

former databases, but there are several issues associated with

3D structure generation and conformational sampling (Foloppe

and Chen, 2009) that we will not dwell on further in this review.

Related difficulties include proper enumeration of stereoiso-

mers, tautomers, and protomers, and this is significant because

these can have an impact on ADMET predictions. It is possible to

find several valuable commercial packages to prepare a collec-

tion and to perform ADMET predictions, such as Schrodinger’s

Ligprep, Openeye’s Filter, or tools from MOE, Tripos, Accelrys,

ICM, and Molecular Discovery, among many others, but, fortu-

nately, free packages with source codes and online services

are also available (Table S1).

Virtual Screening
The term ‘‘virtual screening’’ was first reported in the scientific

literature in 1997 (Horvath, 1997); it can be defined as a set of

computer methods that analyzes large databases or collections

of compounds in order to identify likely hit candidates (Sotriffer,

2011b; Walters et al., 1998). This search can be performed on

libraries that contain physically existing compounds or on virtual

libraries, and thus on compounds that are not yet synthesized.

These in silico experiments can be performed to complement

HTS (and are indeed often integrated in screening campaigns),

prior to experimental screening, or after HTS to rescue some
ights reserved



Figure 1. Examples of Virtual Screening
Methods
Some approaches can be considered to be at the
interface between the two main screening con-
cepts, ligand-based and structure-based, such as
pharmacophore modeling using information from
cocrystallized target-ligand complexes or in the
case of proteochemometric modeling.
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compounds potentially missed by the in vitro readouts. The

complementarity between HTS and virtual screening has been

recently illustrated by screening both in silico and experimentally

the same �198,000-compound collection in an attempt to find

new inhibitors for cruzain, a cysteine protease target for Chagas

disease (Ferreira et al., 2010). Ultimately, 146 reversible, com-

petitive inhibitors of cruzain belonging to five different classes

were identified. Two classes were discovered through the HTS

work (they were false negatives in the docking calculations).

Another two classes were prioritized because of their favorable

docking scores, and the final class was investigated on the basis

of high docking scores and HTS results.

Virtual screening approaches have been traditionally subdi-

vided into two main approaches: first, ligand-based screening,

in which 2D or 3D chemical structures or molecular descriptors

of known actives (and sometimes inactive molecules) are used

to retrieve other compounds of interest from a database using

some kind of similarity measure or by seeking a common sub-

structure or pharmacophore between the query molecule and

the compounds in the database; and second, structure-based

(or receptor-based) screening in which compounds from the

database are docked into a binding site (or over the entire

surface) and are ranked using one or several scoring functions.

The process can then be continued if deemed appropriate using

different types of postprocessing approaches. The ligand- and

structure-based methods can be combined if the necessary

information is available. Virtual screening methods are relatively

well established, and numerous success stories—in terms of hit

identification, contribution to the development of drug candi-

dates, or marketed products—have been recently reviewed

(Clark, 2008; Ekins et al., 2007a, b; Köppen, 2009; Rester,

2008; Ripphausen et al., 2011; Ripphausen et al., 2010; Villou-

treix et al., 2009; Zhong et al., 2007). This does not mean that

the methods have no flaws but that they can help identifying

interesting molecules.
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Virtual Screening Based on

Knowledge About the Bioactive

Ligands

Ligand-based methods are, in general,

based on the assumption (which is not

always true) that similar structures have

a greater-than-random chance of having

similar biological activities (and the ex-

tended idea that states that similar tar-

gets usually interact with similar ligands).

A multitude of techniques is available

covering distinct levels of complexity

and computational cost, from topological

fingerprints to methods based on geo-
metric or energy field representations of themolecular structures

(Figure 1). Most commercial software companies provide ligand-

based virtual screening application, such as FlexS, Catalyst,

MOE, ROCS, LigandScout, Chemaxon, Daylight, FTtrees, ICM-

chemist, and FieldScreen (see for instance Liao et al., 2011),

and some (usually) freely available tools are listed in Table S2.

Several recent reviews provide extensive description of the

methods, performance, and possibility to escape the input che-

motype (scaffold hopping) as well as success stories (Cross and

Cruciani, 2010; Eckert and Bajorath, 2007; Geppert et al., 2010;

Guido et al., 2008; Kirchmair et al., 2008; Reddy et al., 2007;

Tropsha and Golbraikh, 2007; Wolber et al., 2008).

Among the different methods, users can find diverse align-

ment methods in which the detection of similarity is performed

by superposing each of the test molecules of the database

with a reference molecule (the query compound or compounds

if several molecules are used), and the compounds are ranked

according to their extent of similarity. Molecular electrostatic

potential or other energy fields can also be aligned. Along the

same line, shape similarity search algorithms can also align

compounds on the basis of shape or of shape colored by

atomic properties. There are many descriptor-based screening

methods, such as structural keys, fingerprints, feature trees,

and pharmacophore, to name only a few. Machine learning

can be considered as a form of ligand-based virtual screening

approach that builds predictive quantitative structure–activity

relationship (QSAR) models based on available experimental

data. There, compounds are described with various molecular

descriptors to provide numerical representations of the com-

pounds’ properties. Popular machine learning techniques are

then applied and include self-organizing maps, decision trees,

multiple linear regression, artificial neural network, support

vector machine approaches, k-nearest neighbors approach,

and Bayesian methods (Gedeck et al., 2010; Geppert et al.,

2010). Yet, with all these predictive models, the question of their
2 ª2012 Elsevier Ltd All rights reserved 31
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predictive reach has to be carefully investigated. Therefore, it is

important to quantitatively assess the applicability domain of the

model. It should also bementioned that QSAR can be considered

asahybrid approach if, for example, thedockingbindingenergy is

integrated into the model (Garg et al., 2010). It should be noted

that ligand-based screening may use either generated 3D ligand

alignment, as mentioned above, or ligand-superposition directly

inferred from the pocket superposition (Pérot et al., 2010).

Numerous ‘‘success stories’’ have been reported through the

use of ligand-based screening approaches, such as the optimi-

zation of a lead compound toward the generation of Aggrastat,

a fibrinogen receptor antagonist with anticoagulant properties

(Clark, 2008). Many hit compounds have been found with

ligand-based approaches, such as the discovery of nonglyco-

side sodium-dependent glucose cotransporter 2 (diabetes

target) using a combination of different methods (pharmaco-

phore with the DISCO/UNITY modules of the Sybyl package,

shape-based with ROCS, OpenEye and structure clustering

analysis with Discovery Studio, and Accelrys) (Wu et al., 2010)

or the identification of orally active acetylcholinesterase inhibi-

tors (Alzheimer disease) (Chaudhaery et al., 2010) using a

Catalyst/HypoGen-based pharmacophore (Accelrys) or of new

P-glycoprotein inhibitors (multidrug resistance) (Palmeira et al.,

2011) by pharmacophore screening with PharmaGist (Schneid-

man-Duhovny et al., 2008).

Virtual Screening Using Structural Information

from the Targets

The significant increase in the number of available structural

data of macromolecules (X-ray, NMR, homology models, and

the possibility to develop pseudoreceptor models) has acceler-

ated the development of structure-based methods (Cavasotto

and Phatak, 2009; Davis et al., 2008; Fan et al., 2009; Tanrikulu

and Schneider, 2008; Wlodawer et al., 2008). Although the

approaches were essentially used on catalytic sites, they are

now more and more applied, with some tuning, to exosites,

membrane protein targets, protein-membrane interactions, allo-

steric mechanisms, modulation of protein-protein interactions,

and on nucleic acids (Arkin and Whitty, 2009; Dailey et al.,

2009; Kufareva et al., 2011; Laine et al., 2010; Lang et al., 2009;

Segers et al., 2007; Sperandio et al., 2010b; Talele et al., 2010;

Tautermann, 2011; Tuccinardi, 2011). Just like with ligand-based

methods, there are many commercial engines that perform

structure-based screening, including ICM, Glide, Surflex, Gold,

Molegro Virtual Docker, FlexX, FRED, eHITS, LEADFINDER,

and LigandFit (see for instance, Liao et al., 2011 and McInnes,

2007), and there are also several packages that are freely avail-

able (the source code is sometimes provided) to academic

groups and the private sector (examples in Table S3).

Structure-based screening is divided into two major steps,

positioning the ligand into a binding pocket (the docking

methods include rigid body docking, shape matching, incre-

mental construction, or stochastic approaches), and the scoring

or ranking usually fits into one of these approaches: force-field

based, knowledge based, and empirical. The algorithms and

protocols have been extensively reviewed elsewhere (Cavasotto

and Orry, 2007; Moitessier et al., 2008; Reddy et al., 2007; Sper-

andio et al., 2006; Yuriev et al., 2011), and we will here briefly

comment some recent studies about binding pockets, scoring,

postprocessing, and receptor flexibility.
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One of the major steps required in structure-based screening

is the definition of a binding zone where the ligand will be posi-

tioned (unless the process is performed over the entire surface).

The delineation of the pocket can have a significant impact on

the output, and it is thus critical to analyze this region with

care. The predictions are usually performed with geometric or

energy-based methods, although some approaches use both.

It can also be beneficial to put a druggability score on the iden-

tified binding pockets, such as to select the regions that have

a greater chance of efficiently binding a small compound. Com-

bining pocket prediction tools and druggability assessment is

obviously of interest when screening an orphan target or when

looking for an exosite. Furthermore, other computations over

these binding regions can be performed like comparing binding

pockets independently of the fold, such as to eventually get

inspirations from closely related pockets that could already be

cocrystallized with a small molecule inside. Many algorithms

andmethods to predict binding pocket, druggability, and pocket

similarities have been reviewed or published recently, and

several of them are freely available and are accessible as open

source packages or as online servers (Abagyan and Kufareva,

2009; David-Eden et al., 2010; Durrant et al., 2011; Fauman

et al., 2011; Huang, 2009; Huang and Jacobson, 2010; Pérot

et al., 2010; Ren et al., 2010; Schmidtke and Barril, 2010; Sher-

idan et al., 2010; Spitzer et al., 2011; Thangudu et al., 2010)

(see also the next paragraph and the recently released pocket

databases, Kufareva et al., 2012). Most often, if the macromole-

cule is not too flexible, these predictions are possible and give

important insights. In addition, if several experimental structures

of the macromolecule are available, it could be important to run

the computations on all the conformation, whereas if only one

structure is known, simulations can be performed in order to

explore further the cavities or even reveal transient pockets

(Eyrisch and Helms, 2007). In silico identification of a binding

pocket outside the catalytic site and structure-based screening

(with Surflex, AutoDock, or Molegro MolDock Virtual Docker) of

that region have been performed on the tyrosine kinase SYK (a

target for allergic asthma and rhinitis) (Mazuc et al., 2008; Villou-

treix et al., 2011). Similarly, a predicted binding pocket on

APOBEC3C (inhibitory activity against retroviruses) was shown

to interact with RNA, thereby shedding some light onto important

molecular mechanisms (Stauch et al., 2009). Other screening

protocols that are gaining momentum involve the rational design

of multitarget drugs. Most often, the modes of action of these

molecules are elucidated retrospectively but designing multitar-

get inhibitors with predefined biological profiles presents a real

challenge. Wei et al. (2008) have developed a computer-assisted

strategy to screen for multitarget inhibitors using a combination

of molecular docking and common pharmacophore matching

and have successfully applied this approach to design dual-

target inhibitors against both the human leukotriene A4 hydro-

lase and the human nonpancreatic secretory phospholipase A2.

A next critical step is the docking-scoring phase, possibly in

the context of a flexible receptor. Although prediction of the

ligand-binding pose is usually possible with the available

methods, scoring is still very challenging and it is thus difficult

to identify the correct binding pose or to rank compounds.

Some of the difficulties with scoring functions come from the

fact that several terms and events are difficult to parameterize;
ights reserved
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some molecular interactions are not considered, are not known,

or are impossible to calibrate accurately; or the noncovalent

energy terms are assumed to be additive. Several strategies

have been proposed, all with strengths and weaknesses, to try

to improve the process (Zhong et al., 2010). Rescoring can be

performed with more rigorous scoring functions (de Ruiter and

Oostenbrink, 2011; Mitchell and Matsumoto, 2011), using

target-specific scoring functions (Seifert, 2009), consensus

scoring (Charifson et al., 1999; Feher, 2006), consensus docking

and consensus scoring (Lyne, 2002; Miteva et al., 2005), and

protein-ligand interaction fingerprints (Brewerton, 2008). Ligand

efficiency, kinetic efficiency, or drug efficiency index (depending

on the amount of experimental data) evaluation can also assist

the process (Holdgate and Gill, 2011; Kawasaki and Freire,

2011; Montanari et al., 2011; Tanaka et al., 2010), and so

does, in some circumstances, the addition of water molecules

(Huang and Shoichet, 2008; Huggins and Tidor, 2011). In

many situations, however, consideration of receptor flexibility

should, in theory, improve the results but, in practice, the com-

putations usually become extremely demanding with a risk of

diluting the selection of the good compounds because of flaws

in the scoring functions. Yet, several recipes have been sug-

gested to deal implicitly or explicitly with receptor flexibility

during virtual screening experiments or prior to the runs and

include soft potentials, side chain flexibility, local energy minimi-

zation, receptor ensemble-based methods (experimental struc-

tures or simulated ones), pocket fumigation, removal of some

amino acid side chains, and ligand-guided pocket generation

among others (Amaro et al., 2008; Bottegoni et al., 2011;

B-Rao et al., 2009; Fukunishi, 2010; Ivetac and McCammon,

2011; Rueda et al., 2010; Sotriffer, 2011a; Sperandio et al.,

2010a). A key question that is still under debate here is how to

select the right subset of receptor conformations that will

enhance the performance in a real life scenario. Strategies are

still under investigation, yet some guidelines have started to

emerge (Bottegoni et al., 2011; Rueda et al., 2010; Sperandio

et al., 2010a).

Combining (here essentially understood as multistep proto-

cols but not real integration of the methods) ligand-based and

structure-based virtual screening strategies can have utility, as

recently reported (Koutsoukas et al., 2011; Tan et al., 2010;

Wilson and Lill, 2011). For instance, pharmacophore models

derived from the receptor-binding site or from ligand-receptor

complexes are being used. Traditionally, a combination of

methods implies a sequential use of different methods with, for

instance, structure-based screening, experimental validation of

the hit list, and ligand-based screening for one round of optimi-

zation using the best hits as queries. Alternatively, ligand-based

and structure-based scores can be fully integrated, for example,

as in the discovery of novel cruzain inhibitors (Wiggers et al.,

2011). Fragment-based screening approaches have been gain-

ing momentum over these last 10 years, and both in silico

ligand-based and structure-based engines can be used to assist

these endeavors (Barelier and Krimm, 2011; Desjarlais, 2011;

Zoete et al., 2009). Indeed, it was found that fragments could

be docked accurately but that the difficulty was obviously the

scoring step (Verdonk et al., 2011). In that same study, the

authors also highlighted the role of ligand efficiency in docking

performance.
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Some Pitfalls of Virtual Screening
Virtual screening is in general more prevalent in academic and

small company settings, as opposed to large industries, because

it is cheaper thanHTS,and, in several cases, is asefficient ormore

efficient. Often in academia, themost likely scenario is that virtual

screening is performed and in vitro screening follows, but the

selection of hits and the first round of optimization lack the input

of trainedmedicinal chemists. Thus, if the compound discovered

in silico is to be used for chemical biology, it might be of sufficient

quality but if the intention is drug discovery, the wrongmolecules

can bemeaninglessly optimized for years. Indeed,many publica-

tions mentioning in silico hits contain compounds that industry

researchers recognize as being nonspecifically active. These

reports taint the credibility of the approach overall and detract

from those describing genuinely successful work (such observa-

tions can also apply to experimental work; Prinz et al., 2011). It is

often not appreciated that virtual screening can discover false-

positive results, just as HTS does. A random selection of around

100 vendor-supplied compounds has a good chance of pro-

ducing an apparent active at the concentrations that are typically

tested (low to mid micromolar). If this compound selection was

insteaddefined froman in silicoscreen, theapparent linkbetween

cause and effect can be so coercive that due diligence is not

applied, the results are written up, and the manuscript is pub-

lished. This then becomes cited as an example of a virtual

screening success and becomes a self-fulfilling cycle. In fact,

most in silico screening groups have been confronted by this

situation in the past, yet, things are now changing, in part

benefiting from the recent infiltration of industry-savvy medicinal

chemists into academic drug discovery and because multidisci-

plinary projects are becoming the main frame, involving the right

expertise and several departments with complementary skills.

Computational Approaches to Predict Protein-Protein
Interactions and Their Impact on the Design
of Low-Molecular-Weight Modulators
One important challenge in drug discovery is to target macromo-

lecular interaction, such as protein-protein interactions (PPIs).

Proteins interact with other proteins and macromolecules to

perform their living functions, so any pathological condition is

likely to involve a specific interaction between two or more

proteins. The use of peptides or therapeutic antibodies has

been documented, suggesting that it is possible to target certain

PPIs. However, one important challenge is to define strategies to

develop orally available small druglike molecules that could

modulate specific PPIs in a cost-effective manner (Sperandio

et al., 2010b). There are many reasons that make the design diffi-

cult, such as the lack of structural information on the location of

the interface, protein-protein interfaces are usually large and flat,

the hit rate with experimental HTS or in silico screening is usually

low, and the paucity of successful compounds to learn from.

Clearly, there are several possible avenues to attempt to improve

the design of PPI inhibitors, such as exploring a novel area of the

chemical space, rationalization of allosteric mechanism, and so

forth, but definitively, the prediction of likely binding zones in

the interface areas and the modeling of large complexes should

play an important role.

One important difficulty in designing PPI modulators is indeed

the lack of experimental structural data of protein complexes. To
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Figure 2. Example of Small Compounds
Inhibiting Protein-Protein Association
(A) Structure of complex between IL-2 (white CPK)
and its receptor IL-2Ra (ball & stick).
(B) IL-2 bound to its initially developed protein-
protein inhibitor Ro26-4550.
(C) IL-2 bound to its much more potent protein-
protein inhibitor SP4206.
(D) Detail of IL-2 side chains when unbound
(white), bound to IL-2Ra (green), and bound to
SP4206 (yellow). SP4206 is shown for comparison
(red). Residues R38 and F42 would be clashing
with SP4206 binding conformation in the unbound
IL-2 structure. Residues K35, F42, and L72 would
be clashing with SP4206 binding conformation in
the IL-2/IL-2Ra complex structure. None of such
structures could have been used to find SP4206
inhibitor without making the IL-2 surface side
chains flexible.
(E) Hot-spot analysis of IL-2/IL-2Ra interaction by
alanine-scanning mutagenesis, colored according
to effect in interaction (hot spots in red: F42, Y45,
and E62).
(F) Hot-spot analysis of IL-2/SP4206 interaction by
alanine-scanning mutagenesis, colored according
to effect in interaction (hot spots in red: F42, Y45,
and E62, interestingly, the same key residues as in
IL-2/IL-2Ra interaction).
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overcome this, different computational approaches have been

described to help to identify the interface residues for a given

interaction (Fernández-Recio, 2011). Table S4 shows some

examples of interface prediction servers. These computational

predictions can be used to guide mutational experiments, and

they also provide grounds to characterize macromolecular

complexes further as a first step in a drug discovery process

or chemical biology project. The next goal is to characterize

the binding mode between two given proteins that form a

complex of interest. Computational docking is a powerful ap-

proach for this purpose, andmany algorithms have been recently

reported (Ritchie, 2008; Vajda and Kozakov, 2009). Table S4

shows a list of public online servers for protein-protein docking.

Protein docking still facesmany challenges (Lensink andWodak,

2010; Pons et al., 2010) but it has been applied to specific cases

of biomedical interest (e.g., for coagulation proteins; Autin et al.,

2006) and even at a genomewide scale (Mosca et al., 2009).

The next difficulty is to design a small molecule that can effec-

tively compete with a large PPI surface. Fortunately, it was

shown that not all interface residues contribute equally to the

free energy of binding. Only a subset of the interface residues,

so called ‘‘hot spots,’’ typically contributes above 1–2 kcal/mol

to the binding affinity (Clackson and Wells, 1995). It seems

reasonable that a small molecule designed to show any effect

on a given PPI should target such hot-spot residues, although

allosteric pockets could be of interest. Experimental character-

ization of hot-spot residues by alanine-scanning mutagenesis

combined with biophysical experiments is expensive and diffi-

cult to extend at a proteomic scale. For this reason, several

computational methods to predict hot spots have been reported

(Fernández-Recio, 2011), some of which are listed in Table S5.

Most of the methods need the atomic 3D structure of the

protein-protein complex, but in a realistic scenario, the structure

of the complex is unknown. Fortunately, some approaches, such

as pyDockNIP (Grosdidier and Fernández-Recio, 2008), which is
34 Chemistry & Biology 19, January 27, 2012 ª2012 Elsevier Ltd All r
based on analysis of docking results, can work on the unbound

proteins. After characterizing the PPI and identifying putative

hot-spot residues, the next steps can be further investigations

of the druggability (ligandability) (Edfeldt et al., 2011) of the

region (see Table S5 for online servers and databases to predict

the druggability of PPIs) and the use of structure-based virtual

screening experiments.

The applications of all or some of the above-described ideas,

with or without biophysical methods such as NMR, are starting

to pay off (Wells and McClendon, 2007). For example, several

molecules are known to inhibit the interaction between the cyto-

kine interleukin-2 (IL-2) and its receptor IL-2Ra. The company

Hoffmann-La Roche developed the first inhibitor, Ro26-4550,

which was later evolved by Sunesis Pharmaceuticals to a much

more potent compound called SP4206, using a fragment-based

approachandmodeling (Braistedet al., 2003; Thanoset al., 2006)

(Figure 2). Docking and energy calculations are typically applied

in the lead optimization phase, such as for the design of inhibitors

of the Dvl PDZ domain, involved in Wnt signaling pathways

(Segall et al., 2009). The discovery of inhibitors for the ZipA-

FtsZ interaction atWyethwasanother niceexample of integration

of experimental and computational tools (Rush et al., 2005; Tsao

et al., 2006). The combination of virtual fragment analysis and

selection by molecular docking with NMR screening identified

a molecule displaying strongly favorable binding enthalpy for

the pY pocket of the v-Src tyrosine kinase SH2 domain, which

was later nicely explained by computational modeling (Taylor

et al., 2007).More recently, inhibitors for the eIF4E/eIF4G interac-

tion have been found, with their binding modes modeled by

ligand docking using a scoring function based on the predicted

hot spots (Cencic et al., 2011; Kozakov et al., 2011). However,

modulating PPI is still highly challenging. As an example, after

many efforts, some targets do not seem druggable. Only weak

(microM) inhibitors have been found so far to inhibit the ZipA/

FtsZ interaction (Tsao et al., 2006) whereas in the case of the
ights reserved



Figure 3. Example of Systems
Pharmacology Approaches
In a first step, from a drug or a protein, profiling is
performed of multiple targets annotated (from the
literature) or predicted (from the tools presented
above). Second, integration of diverse ‘‘omics’’
data associated with the ensemble of proteins
perturbed by the drug (interactomic, pathway, and
genomics) is performed. Finally, analysis of
potential clinical effects (therapeutic and adverse
effects) associated with the drug is carried out.
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interaction between tumor necrosis factor-a (TNFa) and its

receptor TNFR1, no synthetic small-molecule inhibitors have

been reported. Yet, the very flat VEGF-VEGFR interface has

been recently screened in silico and in vitro with some success

(Gautier et al., 2011), suggesting that more and more PPIs are

going to be modulated by small molecules in the next decade.

Attempts to Move Away from the One Compound-One
Target Paradigm: Data Integration, Data Mining,
Systems Pharmacology and Off-Target Predictions
For 50 years, the one-target one drug paradigm has been the

driving force for developments in biomedicine. Although this

strategy allowed bringing new drugs to the market, a significant

decrease in the rate of new drug candidates has been observed.

The reasons for this attrition are essentially the result of a lack of

efficacy and clinical safety or toxicology (Hopkins, 2008). In

recent years, it has become apparent that many common

diseases, such as cancer, cardiovascular disease, and mental

disorders, are much more complex than initially anticipated

because they are often caused by multiple molecular abnormal-

ities rather than being the result of a single defect.With the recent

advances in molecular biology techniques and the massive bio-

logical data available, the focus on drug discovery is shifting from

a molecular and cellular level to tissue and biological system

level (i.e., network pharmacology) (Berger and Iyengar, 2009;

Boran and Iyengar, 2010). At the difference of the single-target

approach, the network pharmacology identifies a complex (or

combination) of proteins whose perturbation (even indirect)

results to the clinical outcome observed. An example of this

strategy is depicted in Figure 3. One of the pioneers in this

area is the study of Yildirim et al. (2007). They generated a bipar-

tite graph of all known FDA-approved drugs and their targets and

provided systematic information about drugs in the context of

cellular and disease networks through a physical PPI map. Since

then, several databases and tools, such as STITCH (Kuhn et al.,
Chemistry & Biology 19, January 27, 201
2010b), ChemProt (Taboureau et al.,

2011), and Matador (Günther et al.,

2008) have been developed (Table S6).

In addition to systems pharmacology,

others strategies are investigated for a

better prediction of clinical response to

a drug. Taking advantage of large chem-

ical biology repositories presented

above, chemogenomics and proteoche-

mometric approaches (i.e., assessing

the overall ligand-target interaction space

through ligand-based and structure-
based methods) can suggest which ensemble of targets are

likely to be hit by a ligand (Cases andMestres, 2009; Koutsoukas

et al., 2011; Ma et al., 2010; Meslamani and Rognan, 2011).

Among others, we can mention tools such as iPHACE (Garcia-

Serna et al., 2010), SEA (Keiser et al., 2009), PharmMapper (Liu

et al., 2010), or ReverseScreen3D (Kinnings and Jackson,

2011) that are dedicated to such profiling.

Another concept is the extraction of biological information

from microarrays. Using gene-expression signatures, the

genetic perturbation by small molecules can be studied system-

atically and connected to diseases and toxicity (Lamb et al.,

2006). The number of microarray studies is growing rapidly and

can be accessible from public databases such as the Gene

Expression Omnibus (Barrett et al., 2011). Then, on the basis

of similar compound genes signature (Toyoshiba et al., 2009)

or in association with chemical structure similarity (Low et al.,

2011), chemical-phenotype association can be predicted. One

interesting feature about microarray technology is the possibility

to detect tissue-specific genes. Groups of genes whose function

and expression are preferred in one or more cell types can be

gathered from specialized databases (Xiao et al., 2010) and

associated with pathology and diseases (Lage et al., 2008).

Therefore, we can easily imagine that integration of tissue-

specific genes to chemogenomics data could improve the

understanding of clinical effects and adverse effects. Side

effects and adverse drug reactions (ADRs), as mentioned above,

are major bottlenecks in the pharmaceutical industry, and net-

work biology has emerged as an alternative for accurate predic-

tions of promiscuous binders that could cause ADRs (Mendrick,

2011). For example, connecting drugs by side effect similarity

can provide insights into the molecular basis of the drug’s side

effects and allow predicting novel off-targets involved in nega-

tive clinical outcomes (Campillos et al., 2008; Yang et al., 2011;

Brouwers et al., 2011). Using a large, publicly available bioassay

database such as PubChem, the ADRs have also been analyzed
2 ª2012 Elsevier Ltd All rights reserved 35
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at the organ level (Pouliot et al., 2011). It is possible now to get

side and toxicological effects of small molecules from several

repositories, such as Sider (Kuhn et al., 2010a), Actor (Judson

et al., 2008), or Dailymed (http://dailymed.nih.gov/dailymed),

and an in silico approach starts to explore drug repurposing

and associations of drugs, targets, and clinical outcomes into

an integrated network (Achenbach et al., 2011; Ekins et al.,

2011; Kinnings et al., 2009; Oprea et al., 2011; Xie and Bourne,

2011). In this direction, a public-private partnership, named

Open Phacts, within the framework of the European Innovative

Medicines Initiative (IMI) will provide the pharmacological, phar-

macokinetics, ADMET and clinical profiles of drugs and small

molecules on a unique and freely accessible platform in the

next couple of years (http://www.openphacts.org/). Additionally,

genetic polymorphisms and variations in human add an extra

level of difficulty on the drug-clinical effect prediction, and

computational methods have started to evaluate the impact of

single nucleotide polymorphisms (SNPs) in human health and

drug discovery. More than 20 million human SNPs have been re-

ported (Sayers et al., 2011), and elucidation of the functional

effect of a predisposed SNP is a key factor in deciphering the

differences in an individual’s drug response and in under-

standing the mechanism underlying the disease. Several tools

can help to predict disease susceptibility to genetic variation,

as recently reviewed in these articles (Fernald et al., 2011; Mah

et al., 2011; Thusberg and Vihinen, 2009). Overall, computational

methods will play a major role to process massive genomic data

and will contribute to pharmacogenomics and personalized

medicine. However, one of the challenges in systems pharma-

cology will be to move forward from a qualitative level to a quan-

titative component, including concentration level and kinetic

parameters governing the interactions.

Conclusions

A plethora of computational techniques, including fast lead dis-

covery engines, compound profiling, and protein-protein dock-

ing, is available but it is usually not possible to know at the begin-

ning of a project which approach or protocol could be more

successful. Today’s algorithms are usually efficient, although

numerous problems still have to be solved (e.g., scoring, flexi-

bility, designing multitarget inhibitors, predictive ADMET, and

so forth). We have summarized several structural bioinformatics

and chemoinformatics tools, with a special emphasis on soft-

ware packages that tend to be freely available to academic users

or that are implemented online, as well as a few recent success

stories (chemical biology or drug discovery). In line with the

recent observations made by Leeson and St-Gallay (2011),

who stated that during the past 15 years, although it has become

clear that physicochemical properties of drug candidates have

an important influence on the likelihood of compound-related

attrition during development, a substantial part of the pharma-

ceutical industry has not modified its drug design practices

accordingly and is still producing compounds with suboptimal

physicochemical profiles, we suggest that in silico technologies

are also not sufficiently applied in drug industry and academia

alike, because most of the time, computer groups are too small

and overloaded of projects and, as such, are seldom able to

deal with all the data in an appropriate manner. We thus

hope that this review will encourage researchers in life and

health sciences to intensify the usage of computational tools to
36 Chemistry & Biology 19, January 27, 2012 ª2012 Elsevier Ltd All r
develop new ideas and to assist decision making, while being

aware of the strengths and weaknesses of the methods (this of

course holds true for experimental approaches).
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Autin, L., Steen, M., Dahlbäck, B., and Villoutreix, B.O. (2006). Proposed struc-
tural models of the prothrombinase (FXa-FVa) complex. Proteins 63, 440–450.
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